[概述]新版七年级下册数学知识点1-5单元(精品多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。
【相似变换】
※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成。
※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
※3、注意点:
①a:b=k,说明a是b的k倍;
②由于线段a、b的长度都是正数,所以k是正数;
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
④除了a=b之外,a:b≠b:a,与互为倒数;
【平移变换】
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)
(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an
(5)a0 (a≠0) (6)a-p= =
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2 (a-b)2
常用公式:(x+m)(x+n)=
5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
6、互为余角和互为补角和
7、两直线平行的条件:(角的关系线的平行) ①相等,两直线平行;
② 相等,两直线平行;
③ 互补,两直线平行。
8、平行线的性质:两直线平行。(线的平行
9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义
(3)图象交点表示什么意义(4)会求平均值。
11、三角形(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(重点)(6)等腰三角形:(a)知边求边、周长方法
(b)知角求角方法
(c)三线合一:
(7)等边三角形:
12、会判轴对称图形,会根据画对称图形,(或在方格中画)
13、常见的轴对称图形有:14、(1)等腰三角形: 对称轴, 性质
(2)线段 : 对称轴 ,性质
(3)角 : 对称轴 ,性质
15、尺规作图:(1) 作一线段等已知线段 (2)作角已知角 (3)作线段垂直平分线
(4)作角的平分线 (5)作三角形
16、事件的分类:,会求各种事件的概率
(1)摸球:P(摸某种球)=
(2)摸牌: P(摸某种牌)=
(3)转盘: P(指向某个区域)=
(4)抛骰子: P(抛出某个点数)=
(5)方格(面积): P(停留某个区域)=
17、必然事件不可能事件,不确定事件
18、方法归纳:(1)求边相等可以利用
(2)求角相等可以利用 。
(3)计算简便可以利用 。
19、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值
一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是具体的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
六、完全平方公式
完全平方公式中常见错误有:
①漏下了一次项
②混淆公式
③运算结果中符号错误
④变式应用难于掌握。
七、整式的除法
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
相交线与平行线
一、知识网络结构
二、知识要点
1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
与互为邻补角。+=180°;+=180°;+=180°;
+=180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;
=。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,====90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:
①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
的两个角叫同位角。图3中,共有对同位角:与是同位角;
与是同位角;与是同位角;与是同位角。
②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线{BAIHUAWEN.CN}也互相平行。
平行线的性质:
性质1:两直线平行,同位角相等。如图4所示,如果a∥b,
则=;=;=;=。
性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。
性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;
+=180°。
性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。
8、平行线的判定:
判定1:同位角相等,两直线平行。如图5所示,如果=
或=或=或=,则a∥b。
判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。
判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;
+=180°,则a∥b。
判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。
9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。
实数
【知识点一】实数的分类
1、按定义分类:2.按性质符号分类:
注:0既不是正数也不是负数。
【知识点二】实数的相关概念
1、相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数。0的相反数是0.
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称。
(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
2、绝对值|a|≥0.
3、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
4、平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。a(a≥0)的平方根记作。
(2)一个正数a的正的平方根,叫做a的算术平方根。a(a≥0)的算术平方根记作。
5、立方根
如果x3=a,那么x叫做a的立方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
【知识点三】实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。
【知识点四】实数大小的比较
1、对于数轴上的任意两个点,靠右边的点所表示的数较大。
2、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
3、无理数的比较大小:
【知识点五】实数的运算
1、加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负。几个数相乘,有一个因数为0,积就为0.
4、除法
除以一个数,等于乘上这个数的倒数。两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都得0.
5、乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数
你也可以在搜索更多本站小编为你整理的其他新版七年级下册数学知识点1-5单元(精品多篇)范文。
文档为doc格式